First LiDAR wind buoys in China

20.07.2017
The Fraunhofer IWES LiDAR buoy will measure wind conditions in Chinese waters for the first time. (Photo: Fraunhofer IWES)
The Fraunhofer IWES LiDAR buoy will measure wind conditions in Chinese waters for the first time. (Photo: Fraunhofer IWES)

Chinese system integrator Titan Technologies Corporation has ordered two Fraunhofer IWES LiDAR measuring buoys for the surveying of the Zhangpu and Changle offshore wind farms planned for off the coast of China's Fujian province.

This will be the first time a floating LiDAR system will be used for offshore wind measurements in China. The buoys will be used to precisely measure the wind conditions in the designated locations so as to allow precise calculation of the wind farm’s electricity yield. The projected wind farms are owned by the China Three Gorges Corporation (CTG).

Many business hubs are located close to the coast in China: This, coupled with the state’s expansion targets, is stimulating the constant growth of the offshore wind energy sector in China. CTG received the contract to build two wind farms with a capacity of 2,8 GW altogether and wants to obtain precise measurements of the conditions on-site. For an area of 600 MW in later deployment, the Fraunhofer IWES LiDAR buoy technology will be used. Titan Technologies Corporation has been engaged by CTG to perform the measurements. The company will also be completing the installation work, servicing, and data evaluation.

“We have been working with Fraunhofer for years and appreciate their proven, highly deployable solutions for complex operational conditions. Paving the way for CTG’s vision of reliable offshore wind energy for China is an exciting and honorable assignment to which we contribute years of wind energy experience”, said John Feng, Chairman of Titan Technologies Corporation.

By providing comprehensive feedback on the buoy’s performance under the specific operation conditions found in China, Titan contributes to Fraunhofer’s sound understanding of the requirements of varying environmental loads, e.g. typhoons. Furthermore, as an IWES partner, Titan provides Chinese companies information on technological solutions, services and possible application.

“We welcome the order from Titan Technologies Corp. and believe that CTG’s decision to use two Fraunhofer IWES LiDAR buoys could set an example in China”, said Bernhard Lange, Head of Wind Farm Planning and Operation at Fraunhofer IWES.

The Fraunhofer IWES LiDAR buoy has already been used multiple times for offshore measuring; most recently off the Scottish coast for the projected Firth of Forth wind farm. It measures wind speed up to 200 m above the surface of the water.

Fraunhofer IWES / Silke Funke

Similar Entries

Energy Taiwan is the largest and most professional renewable energy trading platform in Taiwan

Energy Taiwan is jointly organized by the Taiwan External Trade Development Council (TAITRA) and SEMI. The event will take place from October 16-18, 2019 at the Nangang Exhibition Center Hall 1. The exhibition will feature four major energy themes, PV Taiwan, Wind Energy Taiwan, HFC Taiwan, and Smart Storage Taiwan. It is expected to attract more than 10,000 domestic and foreign buyers of related industries. Over 15 seminars will be organized during the exhibition. Energy Taiwan is the most important trading platform for renewable energy.

Only includes onshore wind capacity. Total fully commissioned onshore wind capacity in 2018 was 45.4GW. SGRE is Siemens Gamesa Renewable Energy (Source: BloombergNEF)

Developers commissioned a little over 45GW of onshore wind turbines globally in 2018 compared with 47GW a year earlier. Just four manufacturers accounted for more than half, or 57%, of the machines deployed: Denmark’s Vestas, China’s Goldwind, GE Renewable Energy of the U.S. and Spain’s Siemens Gamesa.

Global Energy Storage Systems Market is set to grow from its current market value of more than $340 billion to over $500 billion by 2025; according to a new research report by Global Market Insights, Inc.

As the pilot phase shows, the patented innovation developed by plusAmpere has enormous potential: The use of the innovative reflector and calculation system improves the worldwide yields of photovoltaic facilities (PV facilities), making them more profitable and cost-efficient (pict. plusAmpere)

The company plusAmpere introduces an innovative “reflector and calculation system” offering an efficient and inexpensive way of increasing the overall yield of existing and newly planned photovoltaic and solar thermal facilities.